
 1 5/28/2003

Collision Detection with Swept Spheres and Ellipsoids

Author: Jorrit Rouwé
Source code at: https://github.com/jrouwe/SweptEllipsoid

1. Introduction

Today most games use convex polygons for collision detection. They are usually stored

in a tree like structure to make it possible to quickly reject a lot of polygons when

performing intersection tests. In the end however, every intersection test boils down to

some primitive versus a polygon test.

One commonly used intersection test is that of a swept sphere (a sphere moving along a

line) or a swept ellipsoid (an ellipsoid moving along a line but not rotating) with a static

polygon. A game character for example can be represented by a collection of spheres.

When the character is moving through the environment we need to detect the first point

for which the collection of spheres intersects with the world geometry. After this point is

detected we also need an indication of where the character collided so we can compute a

sliding direction that prevents the character from getting stuck. As an alternative to a

number of spheres we can also use a single ellipsoid as an approximation for the volume

of a character.

Polygons used for rendering usually reside somewhere where they are not accessible to

the collision system (AGP memory for example) or they are compressed and interleaved

with other rendering data like vertex colors. This forces us to store a separate set of

polygons for collision. A cheap way of reducing the amount of memory needed for a

polygon is to store it as a list of 2D vertices together with a plane equation. Of course you

get the extra overhead of storing a plane equation, but when using a BSP (Binary Space

Partitioning) tree for example you need to store this plane anyway.

In this article we will first look at a function that can convert a polygon consisting of 3D

points into a plane and a list of 2D points. After that we will derive the intersection

between a static polygon and a swept sphere and that of a static polygon with a swept

ellipsoid. Finally we show that the same algorithm also works on polygons consisting of

3D points in the case that it is not possible (or not desirable) to store a polygon in 2D.

2. Projecting 3D Points on a Plane

A plane is defined by the set of points P

 for which 0 pCPN

. We call

),,(zyx NNNN

 the plane normal and pC the plane constant. Details on how to create a

plane equation can for example be found in [1].

https://github.com/jrouwe/SweptEllipsoid

 2 5/28/2003

The distance of a point P

 to the plane is: pplane CNPPd

)(.

To project a point on the plane we create an orthonormal base for the plane with origin at

NC p

 and axes),,(NVU

:

UNV

NNNNNN

NNNNNN
U

yxzyyz

yxzxxz

)(),,0(

)(),0,(

22

22

To project a point P

 from world space to plane space use:

),(VPUPP

To project a point P

 from plane space to world space use:

NCVPUPP pyx

3. Swept Sphere Versus Polygon

3.1. Swept Sphere Versus Plane

The first step in determining if a swept sphere collides with a polygon is to determine the

interval over which it intersects with the plane of the polygon.

We use a swept sphere of radius R and center DtBtC

)(, where B

 is the begin

position of the sphere, D

 the translation of the sphere and t is a value in the range [0, 1].

The following image illustrates this:

B D

N

R

 3 5/28/2003

The sphere intersects the plane if the distance of the center of the sphere to the plane is

equal or less than R: RtCd plane))((

.

When ND

 is zero the plane is parallel to the motion of the sphere. If RBd plane)(

 there

is no intersection, if RBd plane)(

 the sphere intersects over the whole range t = [0, 1].

If ND

 is not zero we have to solve RtCd plane))((

 for t:

ND

CNBR
t

ND

CNBR
t

p

p

)(

)(

2

1

If both values are outside the range [0, 1] there is no intersection. We sort the two values

so that t1 < t2 and clamp the values to the range [0, 1]. The interval of intersection is now t

= [t1, t2].

The following function performs this test:

bool PlaneSweptSphereIntersect(const Plane &inPlane, const Vector3 &inBegin, const Vector3 &inDelta,

float inRadius, float &outT1, float &outT2)
{
 // If the center of the sphere moves like: center = inBegin + t * inDelta for t e [0, 1]
 // then the sphere intersects the plane if: -R <= distance plane to center <= R
 float n_dot_d = inPlane.mNormal.Dot(inDelta);
 float dist_to_b = inPlane.GetSignedDistance(inBegin);
 if (n_dot_d == 0.0f)
 {
 // The sphere is moving nearly parallel to the plane, check if the distance
 // is smaller than the radius
 if (Abs(dist_to_b) > inRadius)
 return false;

 // Intersection on the entire range
 outT1 = 0.0f;
 outT2 = 1.0f;
 }
 else
 {
 // Determine interval of intersection
 outT1 = (inRadius - dist_to_b) / n_dot_d;
 outT2 = (-inRadius - dist_to_b) / n_dot_d;

 // Order the results
 if (outT1 > outT2)
 Swap(outT1, outT2);

 // Early out if no hit possible
 if (outT1 > 1.0f || outT2 < 0.0f)
 return false;

 4 5/28/2003

 // Clamp it to the range [0, 1], the range of the swept sphere
 if (outT1 < 0.0f) outT1 = 0.0f;
 if (outT2 > 1.0f) outT2 = 1.0f;
 }

 return true;
}

3.2. Swept Circle Versus Polygon

We have now determined the interval over which the swept sphere intersects with the

plane of the polygon. To test if the sphere intersects with the polygon itself we are going

to look at the problem in the space of the plane. The intersection between the sphere and

the plane is a circle with a radius that varies along the path. The circle has a positive

radius over our previous computed interval [t1, t2]. Outside this interval the radius is

negative because the sphere does not intersect with the plane.

The following image illustrates this:

B

 and D

 are projected on the plane of the polygon in the same way as the points of the

polygon (see section 2), they result in B

 and D

 (2D vectors) so that the center of the

swept circle is described by DtBtC

)(.

The radius of the circle is 32

2

1

222))(()(rtrtrtCdRtR plane

 with:

22

3

2

2

1

)(

))((2

)(

p

p

CNBRr

CNBNDr

NDr

There are three cases for which the sphere intersects with the polygon:

1. The circle intersects with the polygon at t1.

2. The circle intersects with a vertex on the interval [t1, t2].

3. The circle intersects with an edge on the interval [t1, t2].

B’+t1D’ B’+t2D’

 5 5/28/2003

The results of all these tests will give a closest intersection fraction (the value of t for the

first collision) and a collision point. This collision point can be converted back to 3D as

described in section 2. It can be used to determine a collision response once the sphere

hits the polygon.

We will now derive the three tests in the next sections.

3.3. Static Circle Versus 2D Polygon

In the first test we test if the circle at 1t defined by center)(1tC

 and radius)(1tR

intersects with the polygon. This is the case when:

1. The circle center is inside the polygon. In this case)(1tC

 is the collision point

and 1t the intersection fraction.

2. The closest point from)(1tC

 to any of the edges is less than or equal to)(1tR . In

this case this closest point is the collision point and 1t the intersection fraction.

The following function combines both tests. It assumes that the vertices are (inVertices,

inNumVertices) ordered counter clockwise. The center of the circle is inCenter and the

radius of the circle squared is inRadiusSq. The collision point will be returned in

outPoint.

bool PolygonCircleIntersect(const Vector2 *inVertices, int inNumVertices, const Vector2 &inCenter,

float inRadiusSq, Vector2 &outPoint)
{
 // Check if the center is inside the polygon
 if (PolygonContains(inVertices, inNumVertices, inCenter))
 {
 outPoint = inCenter;
 return true;
 }

 // Loop through edges
 bool collision = false;
 for (const Vector2 *v1 = inVertices, *v2 = inVertices + inNumVertices - 1;

v1 < inVertices + inNumVertices; v2 = v1, ++v1)
 {
 // Get fraction where the closest point to this edge occurs
 Vector2 v1_v2 = *v2 - *v1;
 Vector2 v1_center = inCenter - *v1;
 float fraction = v1_center.Dot(v1_v2);
 if (fraction < 0.0f)
 {
 // Closest point is v1
 float dist_sq = v1_center.GetLengthSquared();
 if (dist_sq <= inRadiusSq)
 {
 collision = true;

 6 5/28/2003

 outPoint = *v1;
 inRadiusSq = dist_sq;
 }
 }
 else
 {
 float v1_v2_len_sq = v1_v2.GetLengthSquared();
 if (fraction <= v1_v2_len_sq)
 {
 // Closest point is on line segment
 Vector2 point = *v1 + v1_v2 * (fraction / v1_v2_len_sq);
 float dist_sq = (point - inCenter).GetLengthSquared();
 if (dist_sq <= inRadiusSq)
 {
 collision = true;
 outPoint = point;
 inRadiusSq = dist_sq;
 }
 }
 }
 }

 return collision;
}

The PolygonContains function checks if a point is inside the polygon:

bool PolygonContains(const Vector2 *inVertices, int inNumVertices, const Vector2 &inPoint)
{
 // Loop through edges
 for (const Vector2 *v1 = inVertices, *v2 = inVertices + inNumVertices - 1;

v1 < inVertices + inNumVertices; v2 = v1, ++v1)
 {
 // If the point is outside this edge, the point is outside the polygon
 Vector2 v1_v2 = *v2 - *v1;
 Vector2 v1_point = inPoint - *v1;
 if (v1_v2.mX * v1_point.mY - v1_point.mX * v1_v2.mY > 0.0f)
 return false;
 }

 return true;
}

3.4. Swept Circle Versus 2D Vertex

In the second test, we test if the swept circle intersects with any of the vertices of the

polygon. For every vertex v

 we test if there is a t for which the distance between the

center of the circle and the vertex equals the radius of the circle:

2
2

)()(tRtCv

Solving for t we get a quadratic equation 02 cbtat with:

 7 5/28/2003

2

3

2

2

1

)(2

Bvrc

BvDrb

Dra

Let t be the smallest solution that lies in the interval [0, current closest fraction]. If there

is a solution we store t as the current closest intersection fraction and v

 as the current

collision point.

3.5. Swept Circle Versus 2D Edge

In the third and final test we test if the swept circle intersects with an edge of the

polygon. For every edge 1v

 to 2v

 we will test if there is a t for which the circle and the

edge touch.

First we test if the circle intersects with the infinite line that the edge is part of. The

distance between a point P

 and an infinite line through 1v

 and 2v

 is:

2

12

2

112
2

1

2)()(
)(

vv

Pvvv
PvPdedge

The circle and the infinite line touch when:

22)())((tRtCdedge

Solving for t we get a quadratic equation 02 cbtat with:

 2112

2

13

2

12

1121212

2

12

2

12

2

1

2

12

)()(

)()()(2)(2

)(

BvvvBvrvvc

BvvvDvvBvDrvvb

DvvDrvva

Let t be the smallest solution that lies in the interval [0, current closest fraction]. If there

is no solution we continue with the next edge.

A point on the edge is given by:

)(121 vvfvp

 8 5/28/2003

The closest point from the circle center to the edge is when the direction from the center

of the circle to the point is perpendicular to the edge:

 0)()(12 vvtCp

Solving for f :

2

12

11212)()()(

vv

BvvvtDvv
f

If f is inside the range [0, 1] there is an intersection, we store t as the current closest

intersection fraction and p

 as the current closest intersection point.

3.6. Implementation

This section will combine the results of the previous sections into the full swept sphere

versus static polygon test. First of all we will combine the tests from sections 3.4 and 3.5

since they share a lot of expressions.

The following function tests a swept circle with the edges and vertices of the polygon.

The swept circle travels from inBegin to inBegin + inDelta. inA, inB and inC are a, b,

and c of the quadratic equation of the circle radius. The collision point will be returned in

outPoint and the fraction in outFraction.

bool SweptCircleEdgeVertexIntersect(const Vector2 *inVertices, int inNumVertices, const Vector2 &inBegin,

const Vector2 &inDelta, float inA, float inB, float inC, Vector2 &outPoint, float &outFraction)
{
 // Loop through edges
 float upper_bound = 1.0f;
 bool collision = false;
 for (const Vector2 *v1 = inVertices, *v2 = inVertices + inNumVertices - 1;

v1 < inVertices + inNumVertices; v2 = v1, ++v1)
 {
 float t;

 // Check if circle hits the vertex
 Vector2 bv1 = *v1 - inBegin;
 float a1 = inA - inDelta.GetLengthSquared();
 float b1 = inB + 2.0f * inDelta.Dot(bv1);
 float c1 = inC - bv1.GetLengthSquared();
 if (FindLowestRootInInterval(a1, b1, c1, upper_bound, t))
 {
 // We have a collision
 collision = true;
 upper_bound = t;
 outPoint = *v1;
 }

 // Check if circle hits the edge
 Vector2 v1v2 = *v2 - *v1;

 9 5/28/2003

 float v1v2_dot_delta = v1v2.Dot(inDelta);
 float v1v2_dot_bv1 = v1v2.Dot(bv1);
 float v1v2_len_sq = v1v2.GetLengthSquared();
 float a2 = v1v2_len_sq * a1 + v1v2_dot_delta * v1v2_dot_delta;
 float b2 = v1v2_len_sq * b1 - 2.0f * v1v2_dot_bv1 * v1v2_dot_delta;
 float c2 = v1v2_len_sq * c1 + v1v2_dot_bv1 * v1v2_dot_bv1;
 if (FindLowestRootInInterval(a2, b2, c2, upper_bound, t))
 {
 // Check if the intersection point is on the edge
 float f = t * v1v2_dot_delta - v1v2_dot_bv1;
 if (f >= 0.0f && f <= v1v2_len_sq)
 {
 // We have a collision
 collision = true;
 upper_bound = t;
 outPoint = *v1 + v1v2 * (f / v1v2_len_sq);
 }
 }
 }

 // Check if we had a collision
 if (!collision)
 return false;
 outFraction = upper_bound;
 return true;
}

The tests are not performed on the range [t1, t2] as described in section 3.2, but on the

range [0, current closest fraction]. Numerical round off can generate solutions that are

slightly lower than t1. Solving over this larger range does not give us any false collisions

since the radius of the circle becomes negative outside the range [t1, t2] so no solutions

are possible.

The following piece of code finds the lowest solution of a quadratic equation with

coefficients inA, inB and inC in the interval [0, inUpperBound]. The solution is returned

in outX when the function returns true.

bool FindLowestRootInInterval(float inA, float inB, float inC, float inUpperBound, float &outX)
{
 // Check if a solution exists
 float determinant = inB * inB - 4.0f * inA * inC;
 if (determinant < 0.0f)
 return false;

 // The standard way of doing this is by computing: x = (-b +/- Sqrt(b^2 - 4 a c)) / 2 a
 // is not numerically stable when a is close to zero.
 // Solve the equation according to "Numerical Recipies in C" paragraph 5.6
 float q = -0.5f * (inB + (inB < 0.0f? -1.0f : 1.0f) * Sqrt(determinant));

 // Both of these can return +INF, -INF or NAN that's why we test both solutions

// to be in the specified range below
 float x1 = q / inA;
 float x2 = inC / q;

 // Order the results
 if (x2 < x1)
 Swap(x1, x2);

 10 5/28/2003

 // Check if x1 is a solution
 if (x1 >= 0.0f && x1 <= inUpperBound)
 {
 outX = x1;
 return true;
 }

 // Check if x2 is a solution
 if (x2 >= 0.0f && x2 <= inUpperBound)
 {
 outX = x2;
 return true;
 }

 return false;
}

4. Swept Ellipsoid Versus Polygon

4.1. Theory

In this section we will expand the swept sphere versus static polygon test into a swept

ellipsoid versus static polygon test. We will assume that the ellipsoid does not rotate.

To test a swept ellipsoid with a polygon we have to transform the polygon to the space

where the ellipsoid is a unit sphere (a sphere with radius 1).

We define an ellipsoid by its three orthogonal axis),,(zyx eee

:

The center of the ellipsoid will move according to DtBtC

)(, where B

 is the begin

position of the ellipsoid, D

 the delta translation and t is a value in the range [0, 1].

We define a rotation / scaling matrix that transforms a unit sphere in the ellipsoid:

ex

ey

 11 5/28/2003

1000

0

0

0

zyx

ellipsoidunit

eee
M

When transforming the ellipsoid by the matrix 1

 ellipsoidunitM we get a unit sphere

moving along unitunitunit DtBtC

)(with BMB ellipsoidunitunit

1

 and

 DMD ellipsoidunitunit

1

 .

We need to transform the plane of the polygon with 1

 ellipsoidunitM , this leads to the

plane equation 0 pCPN

 with:

 NM

C
C

NM

NM
N

T

ellipsoidunit

p

p

T

ellipsoidunit

T

ellipsoidunit

Where T
ellipsoidunitM indicates the transpose of ellipsoidunitM .

With this transformed plane we can determine the interval of intersection between the

unit sphere and the plane as before. If there is an intersection we need to transform our

2D polygon to the space of the unit sphere.

Projecting a point from plane space to world space can be written in matrix form:

1

01

y

x

worldplane

P

P

M
P

1000

NCNVU
M p

worldplane

Let worldplaneM and worldplanedtransformeM respectively be the matrix that takes points from

the untransformed plane to world space and from the transformed plane to world space.

The transformation needed for the polygon is:

 12 5/28/2003

 worldplanemeduntransforellipsoidunitworldplanedtransformepolygon MMMM

11

Once the polygon has been transformed we can project unitB

 and unitD

 on the transformed

plane to form B

 and D

. Now we follow the same path as before to determine collision

between a moving circle and a polygon.

If a collision point is found we have to transform it into world space by using the

following matrix:

 worldplanedtransformeellipsoidunitworldcollision MMM

4.2. Implementation

The swept ellipsoid moves from inBegin to inBegin + inDelta. The principal axis of the

ellipsoid are inAxis1, inAxis2 and inAxis3 which should be orthogonal. When there is a

collision the function returns true and the collision point will be in outPoint and the

center of the sphere is inBegin + outFraction * inDelta when the sphere collides.

bool PolygonSweptEllipsoidIntersect(const Plane &inPlane, const Vector2 *inVertices, int inNumVertices,

const Vector3 &inBegin, const Vector3 &inDelta, const Vector3 &inAxis1, const Vector3 &inAxis2,
const Vector3 &inAxis3, Vector3 &outPoint, float &outFraction)

{
 // Compute matrix that takes a point from unit sphere space to world space
 // NOTE: When colliding with lots of polygons this can be cached
 Matrix unit_sphere_to_world;
 unit_sphere_to_world.Column(0) = inAxis1;
 unit_sphere_to_world.Column(1) = inAxis2;
 unit_sphere_to_world.Column(2) = inAxis3;

 // Compute matrix that takes a point from world space to unit sphere space
 // NOTE: When colliding with lots of polygons this can be cached
 Matrix world_to_unit_sphere = unit_sphere_to_world.GetInversed();

 // Compute begin and delta in unit sphere space
 // NOTE: When colliding with lots of polygons this can be cached
 Vector3 begin_uss = world_to_unit_sphere * inBegin;
 Vector3 delta_uss = world_to_unit_sphere * inDelta;

 // Transform the plane into unit sphere local space
 Plane transformed_plane;
 transformed_plane = inPlane.GetTransformedByInverse(unit_sphere_to_world);

 // Determine the range over which the unit sphere intersects the transformed plane
 float t1, t2;
 if (!PlaneSweptSphereIntersect(transformed_plane, begin_uss, delta_uss, 1.0f, t1, t2))
 return false;

 // Get matrix that transforms a point from plane space to world space
 Matrix plane_to_world = inPlane.GetPlaneToWorldMatrix();

 // Get matrix that transforms a point from the transformed plane to unit sphere space
 Matrix transformed_plane_to_unit_sphere = transformed_plane.GetPlaneToWorldMatrix();

 13 5/28/2003

 // Get matrix that takes a 2d polygon vertex from the original space to the space of the
 // transformed plane so that the unit sphere is still a unit sphere
 Matrix plane_to_transformed_plane = transformed_plane_to_unit_sphere.GetInversed()

* world_to_unit_sphere * plane_to_world;

 // The radius of the circle is defined as: radius^2 = 1 - (distance plane to center)^2
 // this can be written as: radius^2 = a * t^2 + b * t + c
 float n_dot_d = transformed_plane.mNormal.Dot(delta_uss);
 float dist_to_b = transformed_plane.GetSignedDistance(begin_uss);
 float a = -n_dot_d * n_dot_d;
 float b = -2.0f * n_dot_d * dist_to_b;
 float c = 1.0f - dist_to_b * dist_to_b;

 // Get the basis vectors for the transformed plane
 const Vector3 &u = transformed_plane_to_unit_sphere.Column(0);
 const Vector3 &v = transformed_plane_to_unit_sphere.Column(1);

 // To avoid translating the polygon we subtract the translation from the begin point
 // and then later add it to the collision result again
 Vector2 trans(plane_to_transformed_plane.E(0, 3), plane_to_transformed_plane.E(1, 3));

 // Get the equation for the intersection circle between the plane and the

// unit sphere: center = begin + t * delta
 Vector2 begin = Plane::sConvertWorldToPlane(u, v, begin_uss) - trans;
 Vector2 delta = Plane::sConvertWorldToPlane(u, v, delta_uss);

 // Transform the polygon
 Vector2 *transformed_vertices = (Vector2 *)alloca(inNumVertices * sizeof(Vector2));
 for (int i = 0; i < inNumVertices; ++i)
 transformed_vertices[i] = Transform2x2(plane_to_transformed_plane, inVertices[i]);

 // Test if sphere intersects at t1
 Vector2 p;
 if (PolygonCircleIntersect(transformed_vertices, inNumVertices,

begin + delta * t1, a * t1 * t1 + b * t1 + c, p))
 {
 outFraction = t1;
 outPoint = unit_sphere_to_world

* (transformed_plane_to_unit_sphere * Vector3(p + trans));
 return true;
 }

 // Test if sphere intersects with one of the edges or vertices
 if (SweptCircleEdgeVertexIntersect(transformed_vertices, inNumVertices, begin, delta,

a, b, c, p, outFraction))
 {
 outPoint = unit_sphere_to_world

* (transformed_plane_to_unit_sphere * Vector3(p + trans));
 return true;
 }

 return false;
}

5. Using Polygons Stored as 3D Points

We stored our polygons as a list of 2D points and a plane equation, but the algorithm is

the same if polygons are stored as a list of 3D points. To make the algorithm work we

need to make the following changes to the equations in the previous sections:

 14 5/28/2003

 Compute the plane equation at run time or store it.

 Set BB

 and DD

 (so they become 3 vectors).

 Set 021 rr and 2

3 Rr .

 Transform the polygon by the 4x4 matrix: 1

 ellipsoidunitpolygon MM .

 Transform the collision result by the 4x4 matrix: ellipsoidunitworldcollision MM .

6. References

1. Nevell, Graphics Gems III, pp. 231-232.

2. W.H. Press, Numerical Recipes in C, Second Edition

(http://www.library.cornell.edu/nr/bookcpdf/c5-6.pdf)

3. T. Schroeder, "Collision Detection Using Ray Casting", Game Developer

Magazine, pp. 50-57, August 2001

(ftp://ftp.gdmag.com/pub/src/aug01.zip)

4. T. Akenine-Möller, E. Haines, Real-Time Rendering

(http://www.realtimerendering.com/int/)

http://www.library.cornell.edu/nr/bookcpdf/c5-6.pdf
ftp://ftp.gdmag.com/pub/src/aug01.zip
http://www.realtimerendering.com/int/

