
Killzone Shadow Fall:
Threading the Entity
Update on PS4

Jorrit Rouwé
Lead Game Tech, Guerrilla Games

Introduction
• Killzone Shadow Fall is a First Person Shooter

• PlayStation 4 launch title

• In SP up to 60 characters @ 30 FPS

• In MP up to 24 players @ 60 FPS

• Gameplay logic has lots of
• Branches
• Virtual functions
• Cache misses

• Not suitable for PS3 SPU’s but PS4 has 6 x86 cores

What do we cover?
• What is an Entity?

• What we did on PS3

• Multi threading on PS4

• Balancing Entities across frames

• Performance issues found

• Performance results achieved

• Debug tools

What is an Entity?

What is an Entity?
• Base class for most game objects

• E.g. Player, Enemy, Weapon, Door
• Not used for static world

• Has Components
• E.g. Model, Mover, Destructibility

• Update at a fixed frequency
• 15, 30, 60 Hz
• Almost everything at 15 Hz
• Player updated at higher frequency to avoid lag

What is a Representation?
• Entities and Components have Representation

• Controls rendering, audio and VFX

• State is interpolated in frames where entity not updated
• Cheaper to interpolate than to update

• Introduces latency
• Always blend towards last update

Movie

Multi Threading Approach

PS3: 1 Entity = 1 Fiber

• Most time spent on PPU

• No clear concurrency model
• Read partial updated state
• Entities deadlock waiting for each other

yield fiber resume fiber

Time

PPU

SPU 1

SPU 2

Entity 1 Entity 2 Entity 3 Entity 1

Animation

Ray Cast

Entity 2

PS4: 1 Entity = 1 Job

• No fibers

• Entity updates as a whole

• How to solve race conditions?

Time

CPU 1

CPU 2

CPU 3

Entity 1

Entity 2

Entity 3

Entity 1 Animation

Ray Cast Entity 2

job

• Make update order explicit:

Strong Dependencies

Missile

Missile Missile Launcher Missile Launcher Soldier

Time

Soldier

strong
dependency

• No (indirect) dependency = no access

• Works two ways: Weapon can access Soldier too

• Create dependency has 1 frame latency

• Global systems need locks

Non-dependent Entities can Execute Concurrently

Soldier1

Weapon1
Time

Soldier2

Weapon2
CPU 2

CPU 1 Soldier1 Weapon1

Soldier2 Weapon2

• A few entities cause huge bottleneck

What about this?

Time

Soldier1

Pistol1

Soldier2

Pistol2

Bullet System

Soldier1 Pistol1 Soldier2 Pistol2 Bullet System

Non-exclusive Dependencies

• Access to ‘Bullet System’ must be lock protected

Soldier1 Soldier2

Bullet System

non-exclusive
Time

CPU 2

CPU 1 Soldier1 Pistol1

Soldier2 Pistol2

Bullet System

Barrier

Pistol1 Pistol2

Weak Dependencies
• 2 tanks fire at each other:

• Update order reversed when circular dependency occurs

• Not used very often (< 10 per frame)

Time

Missile2 Missile1

Tank1 Tank2 Missile2 Missile1

Tank2 Tank1 Missile1 Missile2

or
weak

strong

Tank1 Tank2

Non-updating Entities
• Entity can skip updates (LOD)

• Entity can update in other frame

• Do normal scheduling!

Entity1

Entity3

Entity1

Entity2 Entity3

Time

not updating

Summarizing Dependencies

Strong
Exclusive

Weak
Exclusive

Strong
Non-excl.

Weak
Non-excl.

Symbol

Two way access ✓ ✓ ✓ ✓

Order guaranteed ✓ ✓

Allow concurrency + + ++ ++

Require lock ✓ ✓

Referencing Entities
• Dev build: CheckedPtr<Entity>

• Acts as normal pointer
• Check dependency on dereference

• Retail build: Entity *
• No overhead!

• Doesn’t catch everything
• Can use pointers to members
• Bugs were easy to find

Working with Entities without dependency

• ThreadSafeEntityInterface

• Mostly read only
• Often used state (name, type, position, …)
• Mutex per Entity

• Send message (expensive)
• Processed single threaded when no dependency

• Schedule single threaded callback (expensive)
• Everything can be accessed

Scheduling Algorithm

Scheduling Algorithm

• Entities with exclusive dependencies merged to 1 job
• Dependencies determine sorting

• Non-exclusive dependencies become job dependencies

• Expensive jobs kicked first!

Missile

Missile Launcher

Tank

Bullet System

Pistol

Soldier

Missile Tank

Bullet System

Pistol Soldier

Job1

Job2

job dependency

not updating

weak

non-exclusive

strong

Scheduling Algorithm – Edge Case

Entity1 Entity3

Entity4 Entity2

non-exclusive
exclusive job dependency

Entity1 Entity2

Entity3 Entity4

Job1

Job2

Scheduling Algorithm – Edge Case

• Non cyclic dependency becomes cyclic job dependency

• Job1 and Job2 need to be merged

Entity1 Entity3

Entity4 Entity2

non-exclusive
exclusive

Entity1 Entity2 Entity3 Entity4

Job1

Balancing Entities Across Frames

Balancing Entities Across Frames
• Prevent all 15 Hz entities from updating in same frame

• Entity can move to other frame
• Smaller delta time for 1 update

• Keep parent-child linked entities together
• Weapon of soldier
• Soldier on mounted gun
• Locked close combat

Balancing Entities – In Action

Time in even frame
(sum across cores,
running average)

Balancing Entities – In Action

Time in odd frame
(should be equal)

Balancing Entities – In Action

Civilian @ 15Hz
update even frame

Balancing Entities – In Action

Civilian @ 15Hz
update odd frame

Balancing Entities – In Action

Flash on switch odd / even

Movie

Movie

Performance Issues

Performance Issues
• Memory allocation mutex

• Eliminated many dynamic allocations
• Use stack allocator

• Locking physics world
• R/W mutex for main simulation world
• Second ‘bullet collision’ broadphase + lock

• Large groups of dependent entities

• Player update very expensive

Cut Scene - Problem

• Cut scene entity requires dependencies

• 10+ characters in cut scene creates huge job!

Civilian 1

Cut Scene

Civilian 2 Player Camera

Cut Scene - Solution

• Create sub cut scenes for non-interacting entities

• Master cut scene determines time and flow

• Scan 1 frame ahead in timeline to create dependency

Civilian 1

Cut Scene non-exclusive

Sub Cut Scene 1 Sub Cut Scene 2

Civilian 2

Sub Cut Scene 3

Player Camera

Using an Object
• Dependencies on useable objects not possible (too many)

• Get list of usable objects
• Global system protected by lock

• ‘Use’ icon appears on screen

• Player selects
• Create dependency
• Start ‘use’ animation

• Start interaction 1 frame later (dependency valid)

• Hides 1 frame delay!

Grenade
• Explosion damages many entities

• Creating dependencies not option (too many)

• ThreadSafeEntityInterface not an option
• Need knowledge of parts

• Run line of sight checks inside update

• Uses scheduled callback to apply damage

Performance Results

5000 Crates

Performance Results - Synthetic

100 Soldiers 500 Flags

Level
Counts Dependencies Max

Entities
in Job

Speedup Number
Entities

Updating
Entities

Number
Humans

Strong
Excl

Strong
Non-Excl

5000 Crates (20 µs each) 5019 5008 1 12 4 13 2.8X

100 Soldiers (700 µs each) 326 214 105 212 204 19 4.2X

500 Flags (160 µs each) 519 508 1 12 4 13 5.2X

6 cores!

Performance Results - Levels

Level

Counts Dependencies Max
Entities
in Job

Speedup Number
Entities

Updating
Entities

Number
Humans

Strong
Excl

Strong
Non-Excl

The Helghast (You Owe Me) 1141 206 32 71 23 20 4.1X

The Patriot (On Vectan Soil) 435 257 44 199 107 15 4.3X

The Remains (12p Botzone) 450 128 14 97 44 18 3.7X

The Helghast The Remains The Patriot

Game Frame - The Patriot

Game Frame - Global

Time
18 ms

Game Frame - Global

CPU 1 (main thread)

Game Frame - Global

CPU 2

Game Frame - Global

CPU 3

Game Frame - Global

A
I

P
h
y
s
ic

s

Entity Update VFX & Draw

Barrier

Game Frame – Entity Update
Fix Weak Dependency Cycles

Game Frame – Entity Update
Prepare Jobs

Game Frame – Entity Update
Link and Order Jobs

Game Frame – Entity Update

Execute Jobs

Game Frame – Entity Update
Single Threaded Callbacks

Game Frame – Entity Update

Player Job

Game Frame – Entity Update

Player Entity

Game Frame – Entity Update

Animation

Game Frame – Entity Update

Capsule Collision

Game Frame – Entity Update

Player Representation

Game Frame – Entity Update

OWL (Helper Robot)

Game Frame – Entity Update

Inventory

Game Frame – Entity Update

AI Soldier

Game Frame – Entity Update

Cloth Simulation

Game Frame – Entity Update

Cut Scene

Game Frame – Entity Update

Sub Cut Scenes

Game Frame – Entity Update

Cheap Entities (Destructibles)

Debug Tools

Debug Tools

• Dependencies get complex, we use yEd to visualize!

Debug Tools
Player

Debug Tools

Bullet System

Debug Tools Cut scenes

Conclusions
• Easy to implement in existing engine

• Game programmers can program as if single threaded

• Very few multithreading issues

Questions?

jorrit@guerrilla-games.com

